
Electronic Notes in Theoretical Computer Science 70 No. 2 (2008)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 14 pages

A Proof Dedicated Meta-Language ?

David Delahaye 1

Programming Logic Group
Department of Computing Science
Chalmers University of Technology
S-412 96 Gothenburg, Sweden

Abstract

We describe a proof dedicated meta-language, called Ltac, in the context of the
Coq proof assistant. This new layer of meta-language is quite appropriate to write
small and local automations. Ltac is essentially a small functional core with re-
cursors and powerful pattern-matching operators for Coq terms but also for proof
contexts. As Ltac is not complete, we describe an interface between Ltac and the
full programmable meta-language of the system (Objective Caml), which is also the
implementation language. This interface is based on a quotation system where we
can use Ltac's syntax in ML �les, and where it is possible to insert ML code in Ltac

scripts by means of antiquotations. In that way, the two meta-languages are not
opposed and we give an example where they fairly cooperate. Thus, this shows that
a LCF-like system with a two-level meta-language is completely realistic.

1 Introduction

In a LCF-like proof 2 assistant, we can generally distinguish, beyond the object
language (the logic language), between two kinds of languages: a proof lan-

guage, which corresponds to basic or more elaborate primitives and a tactic

language (also called meta-language), which allows the user to write his/her
own proof schemes. Here, we focus on the tactic language which is essen-
tially the criterion for assessing the power of automation of a system (to be
distinguished from automation which is related to provided tactics).

Initially, the �rst versions of LCF [7] were implemented in Lisp and the
meta-language was ML [6]. Currently, with the evolution of ML, which is
now a genuine programming language (with numerous variants) and not only

? This work has been realized within the LogiCal project (INRIA-Rocquencourt, France).
1 delahaye@cs.chalmers.se, http://www.cs.chalmers.se/�delahaye/.
2 The word "proof" is rather overloaded and can be used in several ways. Here, we use
"proof" for a script to be presented to a machine for checking.

c©2008 Published by Elsevier Science B. V.

mailto:delahaye@cs.chalmers.se
http://www.cs.chalmers.se/~delahaye/

Delahaye

the meta-language of a proof system, the direct descendants of LCF use ML
also as an implementation language. For example, this is the case of HOL or
Coq. This evolution of ML has some interesting consequences for the LCF-
like proof assistants. Indeed, this fusion between the meta-language and the
implementation language allows us to write any tactic, which can have stronger
and deeper interactions with the system. This is a signi�cant evolution, which
makes the design of more complex tactics possible 3 . However, the choice
of such a meta-language has several consequences that must be taken into
account:

• the prover developers have to provide the means to prevent possible incon-
sistencies arising from user tactics. This can be done in various ways. For
example, in LCF and in HOL, this is done by means of the abstract data
type of theorems and only operations (which are supposed to be safe) given
by this type can be used. In Coq, the tactics are not constrained, it is the
type-checker which, as a Cerberus, veri�es that the term (Curry-Howard
isomorphism), built by the tactic, is of the theorem type we want to prove.

• the user has to learn another language which is, in general, quite di�erent
from the proof language. So, it is important to consider how much time the
user is ready to spend on this task which may be rather di�cult or at least,
tedious.

• the language must have a complete debugger because �nding errors in tactic
code is much harder than in proof scripts developed in the proof language,
where the system is supposed to assist in locating errors.

• the proof system must have a clear and a well documented code, especially
for the proof machine part. The user must be able to easily and quickly
identify the necessary primitives or he/she could easily get lost in all the
�les and simply give up.

• the tactics are not portable (contrary to the �rst versions of LCF, where
the system evolutions did not a�ect the meta-language layer) and must be
maintained.

• the language is quite general-purpose and does not provide proof dedicated
procedures in a primitive way.

Thus, we can notice that writing tactics in a full programmable language
involves many constraints for developers and more especially for users. In
fact, we must recognize that the procedure is not really easy but we have
no alternative if we want to avoid restrictions on tactics. However, we can
wonder if this method is suitable for every case. For example, if we want a
tactic which can prove expressions of Prestburger's arithmetic (over integers),
it seems to be a non-trivial problem which requires a complete programming
language. But, now suppose that we want to show that the set of natural

3 It is now possible to use all the system functionalities to develop tactics, because the
meta-language is not any more only a partial interface for the proof engine.

2

Delahaye

numbers has more than two elements. This can be expressed as follows:

` (∃x : N.∃y : N.∀z : N.x = z ∨ y = z) → ⊥
where ⊥ is the logic notation for false. To show this lemma, we introduce

the left-hand member of the conclusion (say H) and eliminate it 4 , then we in-
troduce the witness (say a) and the instantiated hypothesis H (say Ha), �nally,
we eliminate Ha to introduce the second witness (say b) and the instantiation
of Ha (say Hb). At this point, we have the following sequent:

..., Hb : ∀z : N.a = z ∨ b = z ` ⊥
It remains to eliminate Hb with any three natural numbers (say 0, 1 and 2).

Finally, we have three equalities (that we introduce) with a or b as the left-
hand member and 0, 1 or 2 as the right-hand member. To conclude in each
case, it is simply necessary to apply the transitivity of the equality between
two equations with the same left-hand member, then we obtain an equality
between two distinct natural numbers which validates the contradiction (de-
pending on the prover, this last step must be detailed or not).

Of course, the length of this proof depends on the automation of the prover
used. For example, in PVS, it may be imagined that applying the lemma of
transitivity is quite useless and assert would solve all the goals generated by
the eliminations of Hb. In Coq, the proof would be done exactly in this way
and we may want to automate the last part of the proof where we use the
transitivity. Unfortunately, even if this automation seems to be quite easy to
realize, the current tactic combinators (tacticals) are not powerful enough to
make it. So, the user has two choices: to do the proof by hand or to write
his/her own tactic, in Objective Caml 5 , which will be used only for this lemma.

Thus, it is clear that a large and complete programming language is not
a good choice to automate small parts of proofs. This is essentially due to
the fact that the interfacing is too heavy with respect to the result the user
wants to obtain and that, anyway, this language does not provide appropriate
primitives to do so easily. Moreover, the need for small automations must not
only be seen as a lack of automation of the prover because tactics are intended
to solve general problems and sometimes, user problems are too speci�c to be
covered by primitive tactics.

As it seems that there is a gap between the proof language and the lan-
guage used for writing tactics, the idea has been then to propose, in the
context of Coq [12], an intermediate language, called Ltac [2,3], integrated in
the prover and less powerful than the complete language for writing tactics,
which is able to deal with small parts of proofs we may want to automate lo-
cally. This language is intended to be a kind of middle-way where it is possible
to better enjoy both the usual language of Coq and some features of the full

4 An elimination is the application of an inductive schema.
5 This is the meta-language and the implementation language of Coq.

3

Delahaye

programmable language. As this new language is not complete (the aim is to
provide a more proof dedicated language, and not necessary another full pro-
grammable language), we describe also the design of an interface between the
two layers of meta-languages, which can cooperate easily and naturally. This
interface has been implemented as a very speci�c and novel application of the
primitive quotation system of Objective Caml [8] (provided by the Camlp4 [10]
tool).

2 Presentation of Ltac

2.1 De�nition

Before the introduction of Ltac in Coq (version V7), the only way to combine
the primitive tactics was to use prede�ned operators called tacticals. These
are listed in �gure 1 6 .

tac1;tac2 Applies tac1 and tac2 to all the subgoals
tac;[tac1|...|taci|...|tacn] Applies tac and taci to the i-th subgoal
tac1 Orelse tac2 Applies tac1 or tac2 if tac1 fails
Do n tac Applies tac n times
Repeat tac Applies tac until it fails
Try tac Applies tac and does not fail if tac fails
First [tac1|...|taci|...|tacn] Applies the �rst taci which does not fail
Solve [tac1|...|taci|...|tacn] Applies the �rst taci which solves
Idtac Leaves the goal unchanged
Fail Always fails

Fig. 1. Coq's tacticals

As seen previously, no tactical given in �gure 1 seems to be suitable for au-
tomating our small proof. In fact, we would like to do some pattern-matchings
on terms and even better, on proof contexts. So, the idea is to provide a small
functional core with recursion to have some higher order structures and with
pattern-matching operators both for terms as well as for proof contexts to
handle the proof process. The whole syntax of this language, called Ltac [2,3],
is given, using a BNF-like notation, by the entry <expr> in �gures 2 and 3,
where the entries <nat>, <ident>, <term> and <primitive_tactic> repre-
sent respectively the natural numbers, the authorized identi�ers, Coq's terms
and all the basic tactics. In <term>, there can be speci�c variables like ?n,
where n is a nat or ?, which are meta-variables for pattern-matching. ?n al-
lows us to keep instantiations and to make constraints whereas ? shows that
we are not interested in what will be matched.

6 Most of these tacticals can be found in other tactic-style theorem provers.

4

Delahaye

<expr> ::= <expr> ; <expr>

| <expr> ; [(<expr> |)∗ <expr>]

| <pre-atom>

<pre-atom> ::= <expr> <expr>+

| <atom>

<atom> ::= Fun <input-fun>+ -> <expr>

| Let (<let-clauses> And)∗ <let-clauses> In <expr>

| Rec <rec-clause>

| Rec (<rec-clause> And)∗ <rec-clause> In <expr>

| Match Context With (<context-rule> |)∗ <context-rule>

| Match <term> With (<match-rule> |)∗ <match-rule>

| (<expr>)

| (<expr> <expr>+)

| <atom> Orelse <atom>

| Do (int | <ident>) <atom>

| Repeat <atom>

| Try <atom>

| First [(<expr> |)∗ <expr>]

| Solve [(<expr> |)∗ <expr>]

| Idtac

| Fail

| <primitive-tactic>

| <arg>

Fig. 2. Syntax of Ltac (1/2).

The pattern-matching operators make non-linear �rst order uni�cation
and have a more speci�c behavior (compared to the pattern-matching of ML,
for example). Indeed, they can perform backtracking. For instance, with a
Match Context, we try to match the goal with a pattern (hypotheses are on
the left of |- and conclusion is on the right) and if the right-hand member is

5

Delahaye

<input-fun> ::= <ident>

| ()

<let-clauses> ::= <ident> = <expr>

<rec-clause> ::= <ident> <input-fun>+ -> <expr>

<context-rule> ::= [(<context-hyps> ;)∗ <context-hyps> |-

<pattern>] -> <expr>

| [|- <pattern>] -> <expr>

| _ -> <expr>

<context-hyps> ::= <ident> : <pattern>

| _ : <pattern>

<pattern> ::= <term>

| [<term>]

<match-rule> ::= [<pattern>] -> <expr>

| _ -> <expr>

<arg> ::= ()

| <nat>

| <ident>

| '<term>

Fig. 3. Syntax of Ltac (2/2).

a tactic expression which fails then another matching with the same pattern
(using a di�erent combination in hypotheses) is tried. This mechanism allows
powerful backtrackings and we will discuss an example of use below. It is also
possible to perform subterm pattern-matching with patterns of the form [t],
which look for subterms matched by t. We will see an example in section 3.

6

Delahaye

2.2 An example

As an example, we can consider the one we discussed in the introduction. We
want to show that the set of natural numbers has more than two elements.
Using only the primitive tactics and the tacticals of Coq, the proof could look
like the following script:

Lemma card_nat:~(EX x:nat|(EX y:nat|(z:nat)(x=z)\/(y=z))).

Proof.

Red;Intro H.

Elim H;Intros a Ha.

Elim Ha;Intros b Hb.

Elim (Hb (0));Elim (Hb (1));Elim (Hb (2));Intros.

Cut (0)=(1);[Discriminate|Apply trans_equal with a;Auto].

Cut (0)=(1);[Discriminate|Apply trans_equal with a;Auto].

Cut (0)=(2);[Discriminate|Apply trans_equal with a;Auto].

Cut (1)=(2);[Discriminate|Apply trans_equal with b;Auto].

Cut (1)=(2);[Discriminate|Apply trans_equal with a;Auto].

Cut (0)=(2);[Discriminate|Apply trans_equal with b;Auto].

Cut (0)=(1);[Discriminate|Apply trans_equal with b;Auto].

Cut (0)=(1);[Discriminate|Apply trans_equal with b;Auto].

Save.

As can be seen, after the three inductions (Elim), we have eight cases which
can be solved by eight very similar instructions which are possibly di�erent in
the equality we cut and the term used to apply transitivity. As we know that
this equality, say x=y, is such that there exist the equalities a=x and a=y in
the hypotheses, it would be easy to automate this part provided that we can
handle the proof context. This can be done by using Ltac and especially, the
Match Context structure:

Lemma card_nat:~(EX x:nat|(EX y:nat|(z:nat)(x=z)\/(y=z))).

Proof.

Red;Intro H.

Elim H;Intros x Hx.

Elim Hx;Intros y Hy.

Elim (Hy (0));Elim (Hy (1));Elim (Hy (2));Intros;

Match Context With

| [_:?1=?2;_:?1=?3 |- ?] ->

Cut ?2=?3;[Discriminate|Apply trans_equal with ?1;Auto].

Save.

We can notice that the proof is considerably shorter 7 and this is increas-
ingly true when we add cases (with three, four, ... elements). Moreover, the
work is much less tedious than in the case of the proof by hand and the script

7 In this respect, we can see that the non-linear pattern-matching solves the problem in
one pattern instead of two successive patterns.

7

Delahaye

can be written without the help of the interactive toplevel loop. This results
in a proof style which is much more batch mode like.

2.3 Discussion

Beyond small automations, we discovered that Ltac is much more powerful
than might have been expected and, even if it was not our initial aim, this
language can deal with non-trivial problems. For example, we coded a tactic to
decide intuitionistic propositional logic, based on the contraction-free sequent
calculi LJT* of Roy Dyckho� [5]. There was already a tactic called Tauto and
written in Objective Caml by César Muñoz. We observed several signi�cant
di�erences. First, with Ltac, we obtained a drastic reduction in size with
40 lines of code compared with 2000 lines. This can be mainly explained
by the complete backtracking provided by Match Context. Moreover, we
were very surprised to get a considerable increase in performance which can
reach 95% in some examples. In fact, this is understandable since Ltac is a
proof-dedicated language and we can suppose that some algorithms (such as
Dyckho�'s) may be coded very naturally. Also, readability has been greatly
improved so that maintainability has been made much easier 8 . Finally, it
is worth noticing that Ltac scripts can be be reused from a version of Coq
to another one, because no direct call to implementation functions is made,
contrary to tactic codes in Objective Caml.

As another non-trivial example using Ltac, we have been able to write
the tactic Field [4] to solve equalities over (commutative) �elds (generating
side conditions over the inverses that have been simpli�ed). This tactic has
been coded in a total re�exive way directly in the toplevel of Coq, even for the
metai�cation step (also called quotation or rei�cation) of the re�ection process,
which is traditionally done in Objective Caml. This example has shown how
Ltac could be of great help when writing re�exive tactics.

3 Meta-language cooperation

However, even if Ltac is much more expressive than ML to describe tactics,
Ltac is not complete and, in particular, Ltac cannot handle the environment of
Coq. For example, the original Tauto tactic can work with operators, which
are isomorphic to the propositional logic connectors. This cannot be done
directly using Ltac because this requires to look for objects in the environment
and to study their structures, which are essentially low-level operations. Thus,
in order to perform these operations, we must use the main meta-language,
but we would like to keep also the script written with Ltac, which, as seen
previously, has some very interesting features. To do so, we have to provide
an interface, which allows us to use Ltac syntax directly in Objective Caml �les,

8 There is a debugger dedicated to Ltac, which is directly available in the toplevel of Coq.
See [12] for more details.

8

Delahaye

and much more convenient, which allows us to use Objective Caml code in Ltac

scripts.

This interface between Ltac and Objective Caml must be quite light (in the
use, but also in the implementation) so that it can be worth keeping two levels
of meta-languages. To do so, we chose a syntactical way and, in particular,
we have de�ned a system of quotations. This solution is quite natural since
quotations are now primitive in Objective Caml with the Camlp4 [10] tool.

3.1 Quotations

To realize quotations in Objective Caml, we use a tool, called Camlp4 [10],
which is a Pre-Processor-Pretty-Printer 9 for Objective Caml. With Camlp4,
it is possible to de�ne (dynamic) grammars, to make syntax extensions (for
Objective Caml, but also for user grammars) and to build easily quotations.

A quotation in Camlp4 is a part of a program enclosed by special paren-
theses (with <<...>>), whose treatment is done by an user function, called
a quotation expander (if exp is a quotation expander, the corresponding quo-
tation will be noted <:exp<...>>). A quotation can only appear in position
of expression or pattern, which is a strong limitation compared to syntax ex-
tensions also possible with Camlp4. There are two kinds of quotations: those
returning strings (which must be of Objective Caml syntax) and those return-
ing directly Objective Caml syntax trees (that is why Camlp4 quotations can
be considered as primitive quotations of Objective Caml).

Historically, quotations have been introduced in the �rst versions of ML,
to represent the propositions of the LCF logic in a concrete form. Then,
they followed the evolution of Edinburgh ML (INRIA, Cambridge), and were
still there in Caml. Finally, they have been implemented [9] in a variant of
Caml Light, before being available in Objective Caml by Camlp4.

As an example, we can de�ne the type of complex numbers and the corre-
sponding quotation in order to have the usual notation, which is, given z ∈ C,
z = a + i ∗ b, with a, b ∈ R:

Objective Caml version 3.04

type complex = C of float * float;;

type complex = C of float * float

#load "camlp4o.cma";;

Camlp4 Parsing version 3.04

[...]

<<1.2+i*3.5>>;;

- : complex = C (1.2, 3.5)

9 This explains why p4 in Camlp4.

9

Delahaye

In the previous script, we de�ne the (concrete) type of complex numbers,
called complex. Next, we load the Camlp4 tool (�le camlp4o.cma) in order
to be able to parse quotations. Then, we can de�ne the quotation (we have
skipped the corresponding code, which is a bit technical and not relevant for
our purpose). This consists mainly in building the parser for complex numbers
and plugging the quotation expanders into this parser. Finally, we can use the
natural notation of complex numbers with <<...>> (here, it is useless to pre�x
with the corresponding quotation expander because we have set the complex
number quotation as the default quotation), which produces objects of type
complex as expected.

In the previous parser, we might want to be able to write arbitrary com-
plicated Objective Caml expressions for a and b in a + i ∗ b. To do so, instead
of extending the parser with the whole syntax of Objective Caml, an idea is
to add a rule for identi�ers. These identi�ers are called antiquotations and
will not be parsed in the context of the quotation but in the context of the
expression using the quotation. Antiquotations are not a prede�ned notion
of Camlp4, but a programming technique to insert code in quotations. For
example, once the antiquotation rule added to our parser, we can write:

let r = sqrt 15. in <<5.+i*r>>;;

- : complex = C (5, 3.87298334621)

3.2 Description of the interface

To build the interface between Ltac and Objective Caml, the idea has been to
provide a quotation for Ltac. This quotation, called tactic, is just plugged
into the parser entry which recognizes the language of Ltac. With this quo-
tation, it is possible to write Ltac scripts (with their usual syntax) in Objec-
tive Caml �les.

To make the converse insertion, it is a bit more di�cult and to do so, we
have used antiquotations. But a typing problem arises. The parser entry for
Ltac returns Coq syntax trees and this implies that the tactic quotation, as
well as the associated antiquotations, return also Coq syntax trees. This is a
too restrictive condition over the antiquotations, that is to say over the ML
code that can be inserted. To overcome this problem, an idea has been to
add a dynamic node to the Coq syntax tree, where it is possible to insert, a
priori, anyML code. As dynamics are not primitive in Objective Caml, this has
been implemented using the Obj module, which allows us to by-pass the type-
checker locally. To ensure a correct evaluation, we have provided a system of
tags, which allows the tactic interpreter to know how a dynamic node must
be executed.

This quotation system has been implemented in the version V7 of Coq and
is available as a part of the Coq current distribution. As an example, let us
write a tactic which unfolds all the constants of the conclusion of the current
goal. This tactic cannot be directly coded using Ltac because we cannot build

10

Delahaye

patterns which match terms as constants. So, we must use Objective Caml,
but, as said previously, we do not want to loose the Ltac capabilities. Using
the tactic quotation, we could write this tactic in the following way:

Welcome to Coq 7.3 (May 2002)

Coq < Drop.

Objective Caml version 3.04

Camlp4 Parsing version 3.04

[...]

let is_constant ist =

if isConst (List.assoc 1 ist.lmatch) then <:tactic<Idtac>>

else <:tactic<Fail>>;;

let unfolds =

let isc = tacticIn is_constant in

<:tactic<

Repeat

Match Context With

| [|-[?1]] -> $isc;Unfold ?1>>;;

Here, we launch Coq and we go down to the underlying Objective Caml
toplevel with the command Drop (this allows to write ML tactics directly
under Coq in an interactive way). Next, we setup the Coq environment to
write our tactic (we have skipped this part, which consists in loading and
opening some Coq implementation modules).

To understand the tactic, we have to describe the function unfolds �rst.
In unfolds, we embed the is_constant function as a dynamic node with
tacticIn to insert it in the quotation. Then, we use the tactic quotation
to be able to use Ltac's syntax. The Match Context allows us to match every
subterm of the conclusion of a goal (pattern [?1]). In the corresponding
action rule, we test if the matched subterm is a constant by means of the
antiquotation $isc (in the quotation tactic, antiquotations are identi�ers
pre�xed by $), which corresponds to the ML function is_constant. If this
is a constant, this function returns Idtac, which allows Unfold to be applied
to replace the constant by its body. Otherwise, the function returns Fail,
which makes the matching fail and the Match Context catches this failure to
backtrack looking for the next subterm.

To perform the test, the function is_constant must take the tactic inter-
pretation environment as an argument (ist). This environment is a record,
which contains, in particular, the list of meta-variable instantiations coming
from pattern-matchings (�eld lmatch). As seen in the function unfolds, the

11

Delahaye

subterm is bound to meta-variable ?1, so we look (with List.assoc) for the
instantiation corresponding to the meta-variable with the number 1. Next, we
verify if this instantiation is a constant or not (with isConst). As expected,
if this is a constant, we return Idtac (using the tactic quotation to express
the result in concrete syntax), otherwise, we return Fail.

Once we have registered this tactic with the name Unfolds, we can go up
to Coq toplevel and we can test it as follows:

Coq < Definition def0 := `2`.

Coq < Definition def1 := `2+def0`.

Coq < Definition def2 := `4`.

Coq < Goal def1=def2.

1 subgoal

============================

`def1 = def2`

Unnamed_thm < Unfolds.

1 subgoal

============================

`4 = 4`

The parentheses `...` are used to provide a concrete syntax for integers.
We can notice that all the constants have been unfolded. The left-hand side
member has been also reduced due to the tactic Unfold, which performs a
normalization once the constants have been unfolded.

4 Conclusion

4.1 Achievements

As seen in section 2, Ltac is intended to make a real link between the primitive
tactics and the full programmable meta-language (Objective Caml) used to
write large tactics. In particular, it deals with small parts of proofs (that are
to be automated) but can be also used to build some more complex tactics.
This language has also some interesting features, which can be expected from
a tactic language. First, it is integrated in the toplevel of Coq. Moreover, the
code length is, in general, quite short. Finally, the scripts are more readable,
more portable and, as a consequence, more maintainable.

However, as Ltac is not complete, we have presented, in section 3, an
interface between Ltac and Objective Caml. This interface is based on a quo-
tation system, which allows us to use directly Ltac's syntax in Objective Caml
code, but also to insert Objective Caml code in Ltac scripts by means of an-
tiquotations. The quotation system is implemented using the Camlp4 tool of

12

Delahaye

Objective Caml and to insert a wide variety of ML functions in Ltac parts, we
have simulated a notion of dynamics, which is not primitive in Objective Caml.
The global implementation is quite light and we have described an example,
which shows how this bridge can be used very easily and naturally.

4.2 Generalization and contribution to LCF

Even if Ltac has been realized in the context of Coq, the approach is quite
general and such a proof dedicated language could be also formalized in some
other LCF-like theorem provers like HOL or Lego, for example. Indeed, Ltac

is based on some abstract principles (pattern-matching over proof contexts,
backtracking, ...), which do not use any speci�c features of Coq and which are
also relevant in any other tactic-style proof systems. In particular, this means
that this work could be seen as a contribution to the general LCF view where
it can be worth handling a two-level meta-language with a full programmable
layer and a layer containing elaborated proof primitives to build easily some
automations in an abstract way. The situation becomes quite ideal as we know
that the two levels can communicate.

However, the implementation technique used to build the bridge between
the two levels of such a meta-language could be quite di�erent in some other
proof systems depending on the implementation language. In HOL or Lego, for
example, it could be done exactly in this way using also primitive quotations
provided by Standard ML. But in some other systems, like Isabelle (compiled us-
ing Poly/ML) or HOL Light (using Caml Light), the implementation languages
do not provide built-in quotations and instead of simulating quotations by
means of ad hoc �lters, it could be interesting to �nd a more generic embed-
ding technique to deal also with those situations. For that purpose, ideas of
MetaML [11] for multi-stage programming or embedding solutions [1] used by
the Domain-Speci�c Language (DSL) community could be of great help.

References

[1] Koen Claessen. Embedded Languages for Describing and Verifying Hardware.
PhD thesis, Department of Computing Science, Chalmers University of
Technology, April 2001.

[2] David Delahaye. A Tactic Language for the System Coq. In Proceedings of Logic
for Programming and Automated Reasoning (LPAR), Reunion Island, volume
1955, pages 85�95. Springer-Verlag LNCS/LNAI, November 2000.
http://logical.inria.fr/�delahaye/biblio.html.

[3] David Delahaye. Conception de langages pour décrire les preuves et les
automatisations dans les outils d'aide à la preuve: une étude dans le cadre du
système Coq. PhD thesis, Université Pierre et Marie Curie (Paris 6), Décembre
2001.

13

http://logical.inria.fr/~delahaye/biblio.html

Delahaye

[4] David Delahaye and Micaela Mayero. Field: une procédure de décision pour
les nombres réels en Coq. In Journées Francophones des Langages Applicatifs,
Pontarlier. INRIA, Janvier 2001.
http://logical.inria.fr/�delahaye/biblio.html.

[5] Roy Dyckho�. Contraction-free sequent calculi for intuitionistic logic. In The
Journal of Symbolic Logic, volume 57(3), September 1992.

[6] M. J. C. Gordon et al. A Metalanguage for Interactive Proof in LCF. In 5th
POPL, ACM, 1978.

[7] M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: a Mechanised
Logic of Computation. In Lectures Notes in Computer Science, volume 78.
Springer-Verlag, 1979.

[8] Xavier Leroy et al. The Objective Caml system release 3.04. INRIA-
Rocquencourt, December 2001.
http://caml.inria.fr/ocaml/htmlman/.

[9] Michel Mauny and Daniel de Rauglaudre. A Complete and Realistic
Implementation of Quotations for ML. In ACM SIGPLAN Workshop on
Standard ML and its Applications, June 94.

[10] Daniel de Rauglaudre. Camlp4 - Reference Manual version 3.04. INRIA-
Rocquencourt, December 2001.
http://caml.inria.fr/camlp4/manual/.

[11] Walid Taha and Tim Sheard. Multi-stage Programming with Explicit
Annotations. In Proceedings of the ACM-SIGPLAN Symposium on Partial
Evaluation and semantic based program manipulations PEPM'97, Amsterdam.
ACM, June 1997.

[12] The Coq Development Team. The Coq Proof Assistant Reference Manual
Version 7.3. INRIA-Rocquencourt, May 2002.
http://coq.inria.fr/doc-eng.html.

14

http://logical.inria.fr/~delahaye/biblio.html
http://caml.inria.fr/ocaml/htmlman/
http://caml.inria.fr/camlp4/manual/
http://coq.inria.fr/doc-eng.html

	Introduction
	Presentation of Ltac
	Definition
	An example
	Discussion

	Meta-language cooperation
	Quotations
	Description of the interface

	Conclusion
	Achievements
	Generalization and contribution to LCF

	References

